Welfare rankings from multivariate data, a nonparametric approach
نویسندگان
چکیده
منابع مشابه
A New Nonparametric Regression for Longitudinal Data
In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...
متن کاملNonparametric Regression Analysis of Multivariate Longitudinal Data
Multivariate longitudinal data are common in medical, industrial and social science research. However, statistical analysis of such data in the current literature is restricted to linear or parametric modeling, which is inappropriate for applications in which the assumed parametric models are invalid. On the other hand, all existing nonparametric methods for analyzing longitudinal data are for ...
متن کاملMann - Withney multivariate nonparametric control chart.
In many quality control applications, the necessary distributional assumptions to correctly apply the traditional parametric control charts are either not met or there is simply not enough information or evidence to verify the assumptions. It is well known that performance of many parametric control charts can be seriously degraded in situations like this. Thus, control charts that do not requi...
متن کاملNonparametric efficiency analysis: A multivariate conditional quantile approach
This paper focuses on nonparametric efficiency analysis based on robust estimation of partial frontiers in a complete multivariate setup (multiple inputs and multiple outputs). It introduces a-quantile efficiency scores. A nonparametric estimator is proposed achieving strong consistency and asymptotic normality. Then if a increases to one as a function of the sample size we recover the properti...
متن کاملA nonparametric approach to extract information from interspike interval data.
In this work we develop an approach to extracting information from neural spike trains. Using the expectation-maximization (EM) algorithm, interspike interval data from experiments and simulations are fitted by mixtures of distributions, including Gamma, inverse Gaussian, log-normal, and the distribution of the interspike intervals of the leaky integrate-and-fire model. In terms of the Kolmogor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Public Economics
سال: 2011
ISSN: 0047-2727
DOI: 10.1016/j.jpubeco.2010.08.003